米葫芦网

RFC2564 - Application Management MIB

热度:2℃ 发布时间:2023-11-16 19:51:59

Network Working Group C. Kalbfleisch
Request for Comments: 2564 Verio, Inc.
Category: Standards Track C. Krupczak
Empire Technologies, Inc.
R. Presuhn
BMC Software, Inc.
J. Saperia
IronBridge Networks
May 1999
Application Management MIB
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
This memo defines a standards track portion of the Management
Information Base (MIB) for use with network management protocols in
the Internet Community. In particular, it defines objects used for
the management of applications. This MIB complements the System
Application MIB, providing for the management of applications" common
attributes which could not typically be observed without the
cooperation of the software being managed.
Table of Contents
1. IntrodUCtion and Overview ................................... 2
2. The SNMP Management Framework ............................... 4
3. Architecture ................................................ 5
3.1. Relationships to other MIBs ............................... 5
3.1.1. Relationship to the System Application MIB .............. 5
3.1.2. Relationship to the Host Resources MIB .................. 6
3.1.3. Relationship to NSM ..................................... 6
4. MIB Structure ............................................... 6
4.1. The service-level tables .................................. 8
4.1.1. The service name to service instance table .............. 8
4.1.2. The service instance to service name table .............. 9
4.1.3. The service instance to running application element table 9
4.1.4. The running application element to service instance table 9
4.2. The I/O channel group ..................................... 9
4.2.1. The open channels table ................................. 10
4.2.2. The open files table .................................... 10
4.2.3. The open connections table .............................. 11
4.2.4. The transaction stream summary table .................... 12
4.2.5. The transaction flow statistics table ................... 13
4.2.6. The transaction kind statistics table ................... 13
4.3. The former channel group .................................. 13
4.3.1. The former channel control table ........................ 14
4.3.2. The former channel table ................................ 14
4.3.3. The former connection table ............................. 14
4.3.4. The former file table ................................... 14
4.3.5. The transaction history tables .......................... 14
4.4. The running element status and control group .............. 15
4.4.1. The running application element status table ............ 15
4.4.2. The running application element control table ........... 15
5. Definitions ................................................. 16
6. Implementation Issues ....................................... 80
7. Intellectual Property ....................................... 80
8. Acknowledgements ............................................ 81
9. Security Considerations ..................................... 81
10. References ................................................. 82
11. Authors" Addresses ......................................... 84
12. Full Copyright Statement ................................... 86
1. Introduction and Overview
This document furthers the work begun in the systems application MIB
[31].
The development of the "Host Resources MIB" [10], "Network Services
Monitoring MIB" [23], "Mail Monitoring MIB" [24], "Relational
Database Management System (RDBMS) Management Information Base (MIB)
using SMIv2" [12], "Entity MIB using SMIv2" [20], and "Applicability
of Standards Track MIBs to Management of World Wide Web Servers" [21]
provides us with a base of eXPerience in making a variety of
applications visible to management; this specification abstracts out
the common ASPects of applications management and provides a generic
base usable for the management of almost any application.
The key Words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [22].
Due to the design decision to not require application
instrumentation, many important topics were not handled in system
application MIB [31]. The following topics are within the scope of
this document:
- Support for generic application throughput measurements;
- Providing MIB definitions that allow managed entities to
report what they considered to be units of work;
- Providing support for generic application response time
monitoring capabilities; (Note that APIs for this purpose
have already been developed, an example of such an API is to
be found in the "Application Response Measurement (ARM) API
Guide, Version 2" [1].)
- Provide explicit support for the management of applications
distributed within a single managed system ("local"
distribution);
- Address generic resource management issues, including:
- files in use;
- I/O statistics (from the application"s perspective,
not at the operating system or device driver level);
- application-layer networking resource usage
- Facilities for the control of applications, including:
- Stopping application elements
- Suspending and resuming application elements;
- Requesting reconfiguration (e.g., SIGHUP).
Note that these issues are addressed at least in part by other (non-
IETF) standards work, including "ITU-T Recommendation X.744 ISO/IEC
IS 10164-18:1996" [3] and "IEEE P1387.2, POSIX System Administration
- Part 2: Software Administration" [2].
2. The SNMP Management Framework
The SNMP Management Framework presently consists of five major
components:
An overall architecture, described in RFC2571 [26].
Mechanisms for describing and naming objects and events for the
purpose of management. The first version of this Structure of
Management Information (SMI) is called SMIv1 and described in STD
16, RFC1155 [4], STD 16, RFC1212 [6] and RFC1215 [7]. The
second version, called SMIv2, is described in STD 58, RFC2578
[15], RFC2579 [16] and RFC2580 [17].
Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1 and
described in STD 15, RFC1157 [5]. A second version of the SNMP
message protocol, which is not an Internet standards track
protocol, is called SNMPv2c and described in RFC1901 [14] and RFC
1906 [19]. The third version of the message protocol is called
SNMPv3 and described in RFC1906 [19], RFC2572 [27] and RFC2574
[29].
Protocol operations for Accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC1157 [5]. A second set of protocol
operations and associated PDU formats is described in RFC1905
[18].
A set of fundamental applications described in RFC2573 [28] and
the view-based access control mechanism described in RFC2575 [30].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.
3. Architecture
Object-oriented modeling techniques like subclassing and multiple
inheritance can be emulated in the SNMP information model through the
use of tables with common indexes.
The challenge for the developer of management applications is to
recognize those situations in which various aspects of a single
logical resource are represented in several different tables,
possibly defined in different MIBs.
Most of the management information defined here may pertain to any
number of applications in a managed system. The simplest way of
supporting this requirement within the SNMP information model is to
use tables. This means that the management information for a
particular resource may be found in one or more rows of one or more
tables; the fact that this information pertains to a single resource
may be inferred from the index values used, possibly with the support
of mapping tables. This also means that a single table may contain
management information relevant to a number of applications. This
has significant implementation implications; see the implementation
issues section below for more information.
3.1. Relationships to other MIBs
This section outlines the relationships of the components of this MIB
(usually in the form of common indexing structures) to:
- the systems applications MIB [31]
- the host resources MIB [10]
- the network services monitoring MIB [23]
3.1.1. Relationship to the System Application MIB
The system application MIB defines attributes for management of
applications which can be realized without instrumenting the
application itself. This specification extends that framework to
include additional attributes which will typically require
instrumentation within the managed resource. The sysApplRunElmtIndex
is the key connection between these two MIBs; it is essential that
implementations of this MIB and of the system applications MIB
running concurrently on a given platform employ a consistent policy
for assigning this value to identify running application elements.
3.1.2. Relationship to the Host Resources MIB
The Host Resources MIB [10] supplies information on the hardware,
operating system, installed and running software on a host.
The Host Resources MIB has three hardware groups ("hrSystem",
"hrStorage" and "hrDevice") and three software groups ("hrSWRun",
"hrSWRunPerf" and "hrSWInstalled"). Of these, the software groups
are of greatest significance to this MIB.
The software groups define management information on the software
used in the system. The information provided is grouped into (1) the
currently running, (2) the performance and (3) the installed
applications.
The index "hrSWRunIndex" used in the "hrSWRunTable" and other tables
to identify running software by process identifier (or equivalent)
relates information in the Host Resources MIB to information in the
System Applications MIB and this MIB. It is essential that the values
assigned to hrSWRunIndex from the Host Resources MIB be consistent
with the values used for sysApplRunElmtIndex.
3.1.3. Relationship to NSM
The Network Services Monitoring MIB [23] is defined as the base set
of attributes for managing network applications. The Application MIB
includes information normally oBTainable only from the managed
resource itself, rather than the supporting system. Due to
differences in index representation, the relationship between the
Network Services Monitoring MIB and the Application MIB is not
formally defined.
4. MIB Structure
This MIB is organized into several groups, which in turn are
organized into tables to provide the monitoring and control of
information relevant to the management of applications. The groups
model:
- the service-level view of applications
- information on open channels (files, connections,
transaction streams) in use by applications
- historical information on former channels
- process-level status and control information
These groups are organized into various tables. Information for a
particular running managed application appears in the form of entries
in the appropriate tables. The tables are:
- the tables providing a service-level view, including:
- the service name to service instance table
- the service instance to service name table
- the service instance to running application element
table
- the running application element to service instance
table
- the tables providing information on I/O channels, including:
- the table of open channels
- the table of open files
- the open connections table
- the transaction statistics tables
- historical information on I/O channels
- the running application element status and control group
- the running application element status table
- the running application element control table
In order to support SNMPv1, SNMPv2, and SNMPv3 environments, in cases
where counter objects may potentially advance very rapidly, where
sixty-four bit counters have been used thirty-two bit counters
reporting the low-order thirty-two bits of the value have also been
defined.
Since rows in most of these tables will come and go with the running
application elements whose information is contained in them,
sysUpTime.0 is not appropriate as a discontinuity indicator for
counters in these tables. By defining separate discontinuity
indicators for the rows in these tables, entries can come and go as
needed without causing other objects to appear to have
discontinuities. As required by [15], the discontinuity indicators
for the various information objects in these tables are identified in
the relevant DESCRIPTION clauses. Note that a discontinuity in one
of these counters does not imply a sysUpTime.0 discontinuity, nor
does a sysUpTime.0 discontinuity imply a discontinuity in any of
these counters.
4.1. The service-level tables
The service-level tables permit the identification of one or more
instances of named services on a system, and the association of
running application elements to these services.
Service names are represented as human-readable strings, using values
assigned by IANA where possible. The allocation of unique values for
service instance identifiers is a local administrative issue; the
values allocated must be constant for the lifetime of the service
instance, and re-use of values should be avoided.
It is important to understand that a service is not the same thing as
a protocol. Rather, some services may be at least partially
described by the protocol(s) used to provide that service.
In deciding what should or should not be considered a service, the
following factors merit consideration:
- is there an identifiable set of resources associated with
providing this service?
- is there a reasonably long-lived server or client process?
Following this reasoning, one can see where SMTP and HTTP service
providers would be good candidates for classification as services for
purposes of application management, where finger probably would not.
Of course, implementors of this MIB are free to define additional
services. An applicability statement may be an appropriate vehicle
for standardizing how a specific service"s information is reported
using this MIB.
4.1.1. The service name to service instance table
The service name to service instance table uses the service name as
its primary key, and the service instance identifier as its secondary
key. It facilitates the identification and lookup of the instances
of a given service in a system.
4.1.2. The service instance to service name table
The service instance to service name table uses the service instance
identifier as its primary key, and the service name as its secondary
key. Given a service instance identifier, it facilitates the lookup
of the name of the service being provided.
4.1.3. The service instance to running application element table
The service instance to running application element table uses the
service instance identifier as its primary key, and the running
application element index as its secondary key. This facilitates the
identification of the set of running application elements providing a
given instance of a service.
4.1.4. The running application element to service instance table
The running application element to service instance table uses the
running application element index as its primary key and the service
instance identifier as its secondary key. It identifies the set of
services provided by a given running application element.
4.2. The I/O channel group
Information processed by an application can be modeled using the
concept of a channel. Two kinds of channels, for example, are files
and network connections.
+-------+
File
+---------+ /+-------+
+-------------+ Generic /
transaction ---- I/O -------<
stream Channel +------------+
+-------------+ +---------+ open or
listening
connection
+------------+
For each entry in the open channel table, there will be a
corresponding entry in either the open file table or the open
connection table.
The information flowing on a channel may be structured as
transactions. When the information flow on a channel is being
monitored as a transaction stream, an entry in the transaction stream
table will represent this fact and the associated information about
that stream.
To facilitate traversal of these tables and retrieval of information
relevant to a specific running application element or service
instances, the initial indexes of these tables are the same. In each
case, the first index determines whether the second index is
interpreted as a running application element identifier or as a
service instance identifier. The third index serves to uniquely
identify a channel (and consequently, an open connection or file) in
the context of a running application element or service instance.
The transaction stream summary table contains per-stream summaries of
transaction statistics. The transaction flow statistics table
contains statistics broken into both transmit and receive counts for
requests and responses on each stream. The transaction kind
statistics table contains information further broken down by
transaction kind.
The transaction tables have a common structure for their indexing,
with additional indexes added for increasing detail. The initial
three indexes are the same as all the other tables in this group,
serving to uniquely identify each transaction stream.
4.2.1. The open channels table
The following information is available in this table:
- time at which the channel was opened
- number of read requests
- number of bytes read
- time at which most recent read operation was initiated
- number of write requests
- number of bytes written
- time at which most recent write operation was initiated
4.2.2. The open files table
The open files table contains one entry for each file in use by a
manageable running application element. (See "Definitions of
System-Level Managed Objects for Applications" [31] for a detailed
definition of a running application element.) The purpose of this
table is to identify the files in use and to record information
peculiar to files not already covered in the open channel table.
If multiple running application elements open the same file, there
will be an entry for each running application element opening that
file. Similarly, if a running application element opens a file
multiple times, there will be an entry in this table for the file
corresponding to each open.
The task of combining the information for file activity from this
table (organized by running application element) into per-application
statistics can be accomplished by a manager using the System
Application MIB"s [31] sysApplInstallPkgTable to find the installed
application, the sysApplRunTable to find the running instances of
that application, and the sysApplElmtRunTable to find the relevant
values of sysApplElmtRunIndex. The manager, armed with a set of
values for sysApplElmtRunIndex, is now able to retrieve the relevant
portions of the applOpenFileTable and other tables in this MIB.
The following information is available in this table:
- file name
- file size
- current mode (read/write) of this file
By convention, the names "stdin", "stdout" and "stderr" are used when
these streams cannot be resolved to actual file names.
4.2.3. The open connections table
This table provides information on channels that are open connections
or listeners.
The following information is available for each connection:
- identification of the transport protocol in use
- near-end address and port
- far-end address and port
- identification of the application layer protocol in use
4.2.4. The transaction stream summary table
The transaction stream summary table contains per-stream summaries of
transaction statistics. The simple model of a transaction used here
looks like this:
invoker Request performer
- - - - - - >

Response
< - - - - - -

Since in some protocols it is possible for an entity to take on both
the invoker and performer roles, information here is accumulated for
transmitted and received requests, as well as for transmitted and
received responses. Counts are maintained for both transactions and
bytes transferred. The information represented in this table
includes:
- identification of the underlying connection or file used for
this transaction stream
- a human-readable description of this stream
- a human-readable description of this stream"s notion of what
a unit of work is
- the cumulative amount of time spent (as an operation
invoker) waiting for responses (from queueing of request to
arrival of first response)
- the cumulative amount of time spent (as an operation
invoker) receiving responses (time from the arrival of the
first response to the arrival of the last response in a
series of responses to a particular request)
- the cumulative amount of time spent (as an operation
performer) handling requests (time from receipt of request
to queueing of first outgoing response)
- the cumulative amount of time spent (as an operation
performer) sending responses (time from queuing of first
response to the last response in a series of responses to a
particular request)
- the cumulative number of transactions initiated (as an
invoker)
- the cumulative number of transactions processed (as a
performer)
4.2.5. The transaction flow statistics table
The transaction flow statistics table contains statistics broken into
both transmit and receive counts for requests and responses on each
stream. In addition to the service instance / running application
element and transaction stream identifier indexes, rows in this table
are indexed by flow direction (transmit or receive) and role
(requests and responses). The information in this table includes:
- the number of transactions processed
- the number of bytes processed
- the time at which the most recent transaction was processed
in this flow
4.2.6. The transaction kind statistics table
The transaction kind statistics table contains summary information
organized by direction, request/response, and transaction kind for
each stream. The indexing of this table is like that of the
transaction flow table, with the addition of a transaction kind
index.
- number of transactions processed
- number of bytes processed
- the time at which the most recent transaction of this kind
in this direction in this stream was processed
4.3. The former channel group
The former channel group has several tables. The former channel
control table controls the retention of history information by a
running application element or service instance. The remaining
tables parallel the structure of the channel group, with one
significant difference in indexing structure. The closed channel
index is independent from the open channel index.
4.3.1. The former channel control table
The former channel control table provides control over the
accumulation of information on former connections for running
application elements and service instances. For each one, this
table, indexed by the running application element or service instance
index, controls whether information on former channels is
accumulated, how many of these history records are retained, how long
these are retained (within the lifetime of the process), and a count
of history entries that were deleted before their expiration time in
order to make room for new entries.
4.3.2. The former channel table
The former channel table provides historical information on channels
that have been closed. The number and lifetime of these entries is
controlled, for each running application element or service instance,
by the former channel control table. Most of the information in this
table corresponds to information in the open channel table.
For the connection or file-specific aspects of a given former
channel, an entry will exist in the former connection table or in the
former file table.
4.3.3. The former connection table
For formerly open channels that were connections, connection-specific
historical information is kept in the former connection table. For
each entry in the former connection table, there will be an
identically indexed entry in the former channel table.
4.3.4. The former file table
For formerly open channels that were files, file-specific historical
information is kept in the former file table. For each entry in the
former file table, there will be an identically indexed entry in the
former channel table.
4.3.5. The transaction history tables
Two tables provide per-transaction-kind breakdowns for channels
carrying transaction-structured flows. These tables are analogous to
the transaction flow and kind statistics tables, with similar index
structures.
4.4. The running element status and control group
The running application element status and control group has two
tables.
4.4.1. The running application element status table
This table provides information for a running application element.
Indexed by the sysApplElmtRunIndex, an entry in this table reports
useful information on that running element"s resource usage. Entries
in this table contain:
- current heap usage for this running application element
- current number of open network connections for this running
application element
- the most recent error status message issued by this running
application element
Note that other information, such as the current number of open files
for this running application element, is available from the
sysapplElmtRunTable in [31].
4.4.2. The running application element control table
This table provides rudimentary control over a running application
element. Indexed by the sysApplElmtRunIndex, an entry in this table
gives a manager with appropriate permissions the ability to suspend
and resume processing by this running element, the ability to request
reconfiguration, and the ability to terminate the running element.
Variables in this table include:
- a suspend/resume control
- a reconfiguration request control
- a termination request control
5. Definitions
APPLICATION-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
Counter64, Counter32, Gauge32,
mib-2, Unsigned32, zeroDotZero FROM SNMPv2-SMI
DateAndTime, TEXTUAL-CONVENTION,
TestAndIncr, TDomain,
TimeStamp, TruthValue FROM SNMPv2-TC
SnmpAdminString FROM SNMP-FRAMEWORK-MIB
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF
LongUtf8String, sysApplElmtRunIndex FROM SYSAPPL-MIB;
applicationMib MODULE-IDENTITY
LAST-UPDATED "9811171815Z"
ORGANIZATION "Application MIB Working Group"
CONTACT-INFO
"http://www.ietf.org/Html.charters/applmib-charter.html
Randy Presuhn
BMC Software, Inc.
965 Stewart Drive
Sunnyvale, CA 94086
USA
Telephone: +1 408 616-3100
Facsimile: +1 408 616-3101
EMail: randy_presuhn@bmc.com
"
DESCRIPTION
"This MIB defines objects representing generic aspects of
applications that are of interest to management but typically
require instrumentation within managed application elements.
"
::= { mib-2 62 }
--
-- Registration hierarchy for this MIB
--
applicationMibObjects OBJECT IDENTIFIER ::=
{ applicationMib 1 }
applicationMibConformance OBJECT IDENTIFIER ::=
{ applicationMib 2 }
--
-- Groups defined in this MIB
--
applServiceGroup OBJECT IDENTIFIER ::=
{ applicationMibObjects 1 }
applChannelGroup OBJECT IDENTIFIER ::=
{ applicationMibObjects 2 }
applPastChannelGroup OBJECT IDENTIFIER ::=
{ applicationMibObjects 3 }
applElmtRunControlGroup OBJECT IDENTIFIER ::=
{ applicationMibObjects 4 }
Unsigned64TC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A non-negative 64-bit bit integer, without counter
semantics."
SYNTAX Counter64
ApplTAddress ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Denotes a transport service address.
For snmpUDPDomain, an ApplTAddress is 6 octets long,
the initial 4 octets containing the IP-address in
network-byte order and the last 2 containing the UDP
port in network-byte order. Consult "Transport Mappings
for Version 2 of the Simple Network Management Protocol
(SNMPv2)" for further information on snmpUDPDomain."
SYNTAX OCTET STRING (SIZE (0..255))
-- ****************************************************************
--
-- applServiceGroup -
--
-- The service-level tables permit the identification of one
-- or more instances of named services on a system, and the
-- association of running application elements to services.
--
-- ****************************************************************
-- ****************************************************************
--
-- The service name to service instance table
--
-- ****************************************************************
applSrvNameToSrvInstTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplSrvNameToSrvInstEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The service name to service instance table uses
service name as its primary key, and service instance
identifier as its secondary key. It facilitates the
identification and lookup of the instances of a given
service in a system."
::= { applServiceGroup 1 }
applSrvNameToSrvInstEntry OBJECT-TYPE
SYNTAX ApplSrvNameToSrvInstEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applSrvNameToSrvInstEntry identifies an instance of
a given service. The allocation and reservation
of unique values for applSrvIndex is an administrative
issue.
An applSrvNameToSrvInstEntry exists for the lifetime of
that instance of that service; the index values may not
change during that lifetime. "
INDEX { applSrvName, applSrvIndex }
::= { applSrvNameToSrvInstTable 1 }
ApplSrvNameToSrvInstEntry ::= SEQUENCE
{
applSrvInstQual SnmpAdminString
}
applSrvInstQual OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of applSrcInstQual provides additional
information about this particular instance of this
service.
Although not used for indexing purposes, the value of
this attribute should be sufficiently unique to be
helpful to an administrator in distinguishing among
service instances. "
::= { applSrvNameToSrvInstEntry 1 }
-- ****************************************************************
--
-- Service instance to Service Name table
--
-- ****************************************************************
applSrvInstToSrvNameTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplSrvInstToSrvNameEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The service instance to service name table uses
service instance identifier as its primary key, and
service name as its secondary key. Given a service
instance identifier, it facilitates the lookup of the
name of the service being provided."
::= { applServiceGroup 2 }
applSrvInstToSrvNameEntry OBJECT-TYPE
SYNTAX ApplSrvInstToSrvNameEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applSrvInstToSrvNameEntry maps a service instance
identifier back to a service name."
INDEX { applSrvIndex, applSrvName }
::= { applSrvInstToSrvNameTable 1 }
ApplSrvInstToSrvNameEntry ::= SEQUENCE
{
applSrvName SnmpAdminString
}
applSrvName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The human-readable name of a service. Where
appropriate, as in the case where a service can be
identified in terms of a single protocol, the strings
should be established names such as those assigned by
IANA and found in STD 2 [13], or defined by some other
authority. In some cases private conventions apply
and the string should in these cases be consistent
with these non-standard conventions. An applicability
statement may specify the service name(s) to be used.
"
::= { applSrvInstToSrvNameEntry 1 }
-- ****************************************************************
--
-- The service instance to running application element table
--
-- ****************************************************************
applSrvInstToRunApplElmtTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplSrvInstToRunApplElmtEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The service instance to running application element
table uses the service instance identifier as its primary
key, and the running application element index as its
secondary key. This facilitates the identification
of the set of running application elements providing a
given instance of a service."
::= { applServiceGroup 3 }
applSrvInstToRunApplElmtEntry OBJECT-TYPE
SYNTAX ApplSrvInstToRunApplElmtEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applSrvInstToRunApplElmtEntry identifies a running
application element providing an instance of a service.
Note that there may be multiple running application
elements involved in the provision of an instance of
a service."
INDEX { applSrvIndex, sysApplElmtRunIndex }
::= { applSrvInstToRunApplElmtTable 1 }
ApplSrvInstToRunApplElmtEntry ::= SEQUENCE
{
applSrvIndex Unsigned32
}
applSrvIndex OBJECT-TYPE
SYNTAX Unsigned32 (1.."ffffffff"h)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An applSrvIndex is the system-unique identifier of
an instance of a service. The value is unique not only
across all instances of a given service, but also across
all services in a system.
Re-use of values for this index should be avoided.
No two service instances in a given system shall
concurrently have the same value for this index.
The value zero is excluded from the set of permitted
values for this index. This allows other tables to
potentially represent things which cannot be associated
with a specific service instance.
"
::= { applSrvInstToRunApplElmtEntry 1 }
-- ****************************************************************
--
-- The running application element to service instance table
--
-- ****************************************************************
applRunApplElmtToSrvInstTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplRunApplElmtToSrvInstEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The running application element to service instance
table uses the running application element index as
its primary key and the service instance identifier as
its secondary key. It identifies the set of services
provided by a given running application element."
::= { applServiceGroup 4 }
applRunApplElmtToSrvInstEntry OBJECT-TYPE
SYNTAX ApplRunApplElmtToSrvInstEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applRunApplElmtToSrvInstEntry serves to identify an
instance of a service being provided by a given running
application element. Note that a particular running
application element may provide multiple services."
INDEX { sysApplElmtRunIndex, applSrvInstance }
::= { applRunApplElmtToSrvInstTable 1 }
ApplRunApplElmtToSrvInstEntry ::= SEQUENCE
{
applSrvInstance Unsigned32
}
applSrvInstance OBJECT-TYPE
SYNTAX Unsigned32 (1.."ffffffff"h)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An applSrvInstance is the system-unique identifier of an
instance of a service. The value is unique not only
across all instances of a given service, but also across
all services.
Re-use of values for this index should be avoided.
No two service instances in a given system shall
concurrently have the same value for this index.
The value zero is excluded from the set of permitted
values for this index. This allows other tables to
potentially represent things which cannot be associated
with a specific service instance.
This attribute is semantically identical to
applSrvIndex."
::= { applRunApplElmtToSrvInstEntry 1 }
-- ****************************************************************
--
-- applChannelGroup - group with tables for I/O
--
-- In this group, the common abstraction is the Channel.
-- Channels are realized as files or connections.
-- The information flowing on a channel can always be
-- measured in terms of a byte stream. Furthermore, for many
-- channels, this information may also be measured in terms
-- of transactions.
--
-- For all of these tables, the first two indexes determines
-- whether what is being measured is for a single running
-- application element or for an instance of a service.
--
-- The second index identifies the running application element
-- or service instance.
--
-- The third index is the channel id, which uniquely identifies
-- a channel within the context of a running application element
-- or service instance.
--
-- Any remaining indexes are table-specific.
--
-- ****************************************************************
-- ****************************************************************
--
-- applOpenChannelTable - Table of Open Channels
--
-- ****************************************************************
applOpenChannelTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplOpenChannelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The applOpenChannelTable reports information on open
channels for running application elements
and for service instances. This table is
indexed by applElmtOrSvc, applElmtOrSvcId, and
applOpenChannelIndex. This effectively groups all
entries for a given running application element
or service instance together. ApplChannelIndex uniquely
identifies an open channel (and, consequently, a file
or connection) within the context of a particular
running application element or service instance.
Some of the information in this table is available
through both sixty-four and thirty-two bit counters.
The sixty-four bit counters are not accessible in
protocols that do not support this data type."
::= { applChannelGroup 1 }
applOpenChannelEntry OBJECT-TYPE
SYNTAX ApplOpenChannelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applOpenChannelEntry indicates that a channel has been
opened by this running application element or service
instance and is still open. Note that if a file has been
opened multiple times, even by the same process, it will
have multiple channel entries."
INDEX { applElmtOrSvc, applElmtOrSvcId,
applOpenChannelIndex }
::= { applOpenChannelTable 1 }
ApplOpenChannelEntry ::= SEQUENCE
{
applElmtOrSvc INTEGER,
applElmtOrSvcId Unsigned32,
applOpenChannelIndex Unsigned32,
applOpenChannelOpenTime TimeStamp,
applOpenChannelReadRequests Counter64,
applOpenChannelReadRequestsLow Counter32,
applOpenChannelReadFailures Counter32,
applOpenChannelBytesRead Counter64,
applOpenChannelBytesReadLow Counter32,
applOpenChannelLastReadTime DateAndTime,
applOpenChannelWriteRequests Counter64,
applOpenChannelWriteRequestsLow Counter32,
applOpenChannelWriteFailures Counter32,
applOpenChannelBytesWritten Counter64,
applOpenChannelBytesWrittenLow Counter32,
applOpenChannelLastWriteTime DateAndTime
}
applElmtOrSvc OBJECT-TYPE
SYNTAX INTEGER { service(1),
element(2) }
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The applElmtOrSvc attribute serves as an index for tables
that can hold information both for individual running
application elements as well as for service instances.
If the value is service(1), the row contains information
gathered at the level of a service.
If the value is element(2), the row contains information
for an individual running application element."
::= { applOpenChannelEntry 1 }
applElmtOrSvcId OBJECT-TYPE
SYNTAX Unsigned32 (1.."ffffffff"h)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The applElmtOrSvcId attribute is used as an index in
conjunction with the applElmtOrSvc attribute.
When the value of applElmtOrSvc is service(1), this
attribute"s value corresponds to that of applSrvIndex,
when the value of applElmtOrSvc is element(2), this
attribute"s value corresponds to sysApplElmtRunIndex."
::= { applOpenChannelEntry 2 }
applOpenChannelIndex OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This attribute serves to uniquely identify this open
connection in the context of the running application
element or service instance. Where suitable, the
application"s native descriptor number should be used."
::= { applOpenChannelEntry 3 }
applOpenChannelOpenTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute records the value of sysUpTime.0
when this channel was opened and this entry was added to
this table. This attribute serves as a discontinuity
indicator for the counter attributes in this entry
and for any corresponding entries in the
applOpenConnectionTable, applOpenFileTable, and the
applTransactionStreamTable."
::= { applOpenChannelEntry 4 }
applOpenChannelReadRequests OBJECT-TYPE
SYNTAX Counter64
UNITS "read requests"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the number of read requests
for this channel. All read requests for this channel
by this entity, regardless of completion status, are
included in this count.
Read requests are counted in terms of system calls,
rather than API calls.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 5 }
applOpenChannelReadRequestsLow OBJECT-TYPE
SYNTAX Counter32
UNITS "read requests"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the low thirty-two bits of
applOpenChannelReadRequests.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 6 }
applOpenChannelReadFailures OBJECT-TYPE
SYNTAX Counter32
UNITS "failed read requests"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the number of failed read
requests.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 7 }
applOpenChannelBytesRead OBJECT-TYPE
SYNTAX Counter64
UNITS "bytes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the number of bytes read from
this channel. Only bytes successfully read are included
in this count.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 8 }
applOpenChannelBytesReadLow OBJECT-TYPE
SYNTAX Counter32
UNITS "bytes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute corresponds to the low thirty-two bits
of applOpenChannelBytesRead.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 9 }
applOpenChannelLastReadTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the time of the most recent read
request made by this entity, regardless of completion
status, for this open channel.
If no read requests have been made the value of this
attribute shall be "0000000000000000"H "
DEFVAL { "0000000000000000"H }
::= { applOpenChannelEntry 10 }
applOpenChannelWriteRequests OBJECT-TYPE
SYNTAX Counter64
UNITS "write requests"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the number of write requests for
this channel made by this entity. All write requests
for this channel, regardless of completion status, are
included in this count.
Write requests are counted in terms of system calls,
rather than API calls.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 11 }
applOpenChannelWriteRequestsLow OBJECT-TYPE
SYNTAX Counter32
UNITS "write requests"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute corresponds to the low thirty-two bits
of applOpenChannelWriteRequests.
Discontinuities in this counter can be detected
by monitoring the applOpenChannelOpenTime value for
this entry."
::= { applOpenChannelEntry 12 }
applOpenChannelWriteFailures OBJECT-TYPE
SYNTAX Counter32
UNITS "failed write requests"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the number of failed write
requests.
Discontinuities in this counter can be detected
by monitoring the applOpenChannelOpenTime value for
this entry."
::= { applOpenChannelEntry 13 }
applOpenChannelBytesWritten OBJECT-TYPE
SYNTAX Counter64
UNITS "bytes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the number of bytes written to
this channel. Only bytes successfully written (without
errors reported by the system to the API in use by the
application) are included in this count.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 14 }
applOpenChannelBytesWrittenLow OBJECT-TYPE
SYNTAX Counter32
UNITS "bytes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute corresponds to the low thirty-two bits
of applOpenChannelBytesWritten.
Discontinuities in this counter can be detected by
monitoring the applOpenChannelOpenTime value for this
entry."
::= { applOpenChannelEntry 15 }
applOpenChannelLastWriteTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the time of the most recent write
request made by this running application element or
service instance, regardless of completion status, for
this open channel.
If no write requests have been made, the value
of this attribute shall be "0000000000000000"H "
DEFVAL { "0000000000000000"H }
::= { applOpenChannelEntry 16 }
-- ****************************************************************
--
-- applOpenFileTable - Table of Open Files
--
-- ****************************************************************
applOpenFileTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplOpenFileEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The applOpenFileTable reports information on open files
for service instances or application elements. This
table is indexed by applElmtOrSvc and applElmtOrSvcId,
effectively grouping all entries for a given running
service instance or application element together, and
by applOpenChannelIndex, uniquely identifying an open
channel (and, consequently, a file) within the context
of a particular service instance or application element.
Elements in this table correspond to elements in the
applOpenChannelTable that represent files. For rows in
the applOpenChannelTable that do not represent files,
corresponding rows in this table will not exist."
::= { applChannelGroup 2 }
applOpenFileEntry OBJECT-TYPE
SYNTAX ApplOpenFileEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applOpenFileEntry indicates that a file has been
opened by this running application element and is
still open. Note that if a file has been opened
multiple times, even by the same process, it will have
multiple entries."
INDEX { applElmtOrSvc, applElmtOrSvcId,
applOpenChannelIndex }
::= { applOpenFileTable 1 }
ApplOpenFileEntry ::= SEQUENCE
{
applOpenFileName LongUtf8String,
applOpenFileSizeHigh Unsigned32,
applOpenFileSizeLow Unsigned32,
applOpenFileMode INTEGER
}
applOpenFileName OBJECT-TYPE
SYNTAX LongUtf8String
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the name of this open file.
Wherever practical, a fully qualified path name should
be reported.
The values "stdin", "stdout", and "stderr" are reserved
in accordance with common usage when the fully qualified
path name cannot be determined."
::= { applOpenFileEntry 1 }
applOpenFileSizeHigh OBJECT-TYPE
SYNTAX Unsigned32
UNITS "2^32 byte blocks"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This file"s current size in 2^32 byte blocks.
For example, for a file with a total size of 4,294,967,296
bytes, this attribute would have a value of 1; for a file
with a total size of 4,294,967,295 bytes this attribute"s
value would be 0."
::= { applOpenFileEntry 2 }
applOpenFileSizeLow OBJECT-TYPE
SYNTAX Unsigned32
UNITS "bytes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This file"s current size modulo 2^32 bytes.
For example, for a file with a total size of
4,294,967,296 bytes this attribute would have a value
of 0; for a file with a total size of 4,294,967,295
bytes this attribute"s value would be 4,294,967,295."
::= { applOpenFileEntry 3 }
applOpenFileMode OBJECT-TYPE
SYNTAX INTEGER { read(1),
write(2),
readWrite(3) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute reports the current mode of this file from
the perspective of this running application element.
These values have the following meanings:
read(1) - file opened for reading only
write(2) - file opened for writing only
readWrite(3) - file opened for read and write.
These values correspond to the POSIX/ANSI C library
function fopen() "type" parameter, using the following
mappings:
r -> read(1)
w -> write(2)
a -> write(2)
+ -> readWrite(3)
"
::= { applOpenFileEntry 4 }
-- ****************************************************************
--
-- applOpenConnectionTable - Open Connection Table
--
-- ****************************************************************
applOpenConnectionTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplOpenConnectionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The applOpenConnectionTable provides information about
open and listening connections from the perspective
of a running application element or service instance.
Entries in this table are indexed by applElmtOrSvc,
applElmtOrSvcID, and by applOpenChannelIndex, which
serves to uniquely identify each connection in the
context of a service instance or running application
element.
For each row in this table, a corresponding row will
exist in the applOpenChannel table. For rows in the
applOpenChannelTable which do not represent open or
listening connections, no corresponding rows will exist
in this table."
::= { applChannelGroup 3 }
applOpenConnectionEntry OBJECT-TYPE
SYNTAX ApplOpenConnectionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applOpenConnectionEntry indicates that a running
application element or service instance has an open
connection. The entry has information describing that
connection.
In the case of a TCP transport, the element
applOpenConnectionNearEndAddr and that row"s
applOpenConnectionFarEndAddr would correspond
to a tcpConnEntry. For a UDP transport, a
similar relationship exists with respect to
a udpEntry."
INDEX { applElmtOrSvc, applElmtOrSvcId,
applOpenChannelIndex }
::= { applOpenConnectionTable 1 }
ApplOpenConnectionEntry ::= SEQUENCE
{
applOpenConnectionTransport TDomain,
applOpenConnectionNearEndAddr ApplTAddress,
applOpenConnectionNearEndpoint SnmpAdminString,
applOpenConnectionFarEndAddr ApplTAddress,
applOpenConnectionFarEndpoint SnmpAdminString,
applOpenConnectionApplication SnmpAdminString
}
applOpenConnectionTransport OBJECT-TYPE
SYNTAX TDomain
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applOpenConnectionTransport attribute identifies the
transport protocol in use for this connection. If it is
not practical to determine the underlying transport, this
attribute"s value shall have a value of {0 0}."
DEFVAL { zeroDotZero }
::= { applOpenConnectionEntry 1 }
applOpenConnectionNearEndAddr OBJECT-TYPE
SYNTAX ApplTAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applOpenConnectionNearEndAddr attribute reports the
transport address and port information for the near end
of this connection.
If the value is not known, the value has a length
of zero."
DEFVAL { "" }
::= { applOpenConnectionEntry 2 }
applOpenConnectionNearEndpoint OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applOpenConnectionNearEndpoint attribute reports the
fully-qualified domain name and port information for the
near end of this connection.
The format of this attribute for TCP and UDP-based
protocols is the fully-qualified domain name immediately
followed by a colon which is immediately followed by
the decimal representation of the port number.
If the value is not known, the value has a length
of zero."
DEFVAL { "" }
::= { applOpenConnectionEntry 3 }
applOpenConnectionFarEndAddr OBJECT-TYPE
SYNTAX ApplTAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applOpenConnectionFarEndAddr attribute reports the
transport address and port information for the far end
of this connection.
If not known, as in the case of a connectionless
transport, the value of this attribute shall be a
zero-length string."
DEFVAL { "" }
::= { applOpenConnectionEntry 4 }
applOpenConnectionFarEndpoint OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applOpenConnectionFarEndpoint attribute reports
the fully-qualified domain name and port information
for the far end of this connection.
The format of this attribute for TCP and UDP-based
protocols is the fully-qualified domain name immediately
followed by a colon which is immediately followed by
the decimal representation of the port number.
If not known, as in the case of a connectionless
transport, the value of this attribute shall be a
zero-length string."
DEFVAL { "" }
::= { applOpenConnectionEntry 5 }
applOpenConnectionApplication OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applOpenConnectionApplication attribute identifies
the application layer protocol in use. If not known,
the value of this attribute shall be a zero-length
string.
When possible, protocol names should be those used in
the "ASSIGNED NUMBERS" [13]. For example, an SMTP mail
server would use "SMTP"."
DEFVAL { "" }
::= { applOpenConnectionEntry 6 }
-- ****************************************************************
--
-- applTransactionStreamTable - common
-- information for transaction stream monitoring
--
-- ****************************************************************
applTransactionStreamTable OBJECT-TYPE
SYNTAX SEQUENCE OF ApplTransactionStreamEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The applTransactionStreamTable contains common
information for transaction statistic accumulation."
::= { applChannelGroup 4 }
applTransactionStreamEntry OBJECT-TYPE
SYNTAX ApplTransactionStreamEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An applTransactionStreamEntry contains information for
a single transaction stream. A transaction stream
can be a network connection, file, or other source
of transactions."
INDEX { applElmtOrSvc, applElmtOrSvcId,
applOpenChannelIndex }
::= { applTransactionStreamTable 1 }
ApplTransactionStreamEntry ::= SEQUENCE {
applTransactStreamDescr SnmpAdminString,
applTransactStreamUnitOfWork SnmpAdminString,
applTransactStreamInvokes Counter64,
applTransactStreamInvokesLow Counter32,
applTransactStreamInvCumTimes Counter32,
applTransactStreamInvRspTimes Counter32,
applTransactStreamPerforms Counter64,
applTransactStreamPerformsLow Counter32,
applTransactStreamPrfCumTimes Counter32,
applTransactStreamPrfRspTimes Counter32 }
applTransactStreamDescr OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applTransactStreamDescr attribute provides a
human-readable description of this transaction stream.
If no descriptive information is available, this
attribute"s value shall be a zero-length string."
DEFVAL { "" }
::= { applTransactionStreamEntry 1 }
applTransactStreamUnitOfWork OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applTransactStreamUnitOfWork attribute provides a
human-readable definition of what the unit of work is
for this transaction stream.
If no descriptive information is available, this
attribute"s value shall be a zero-length string."
DEFVAL { "" }
::= { applTransactionStreamEntry 2 }
applTransactStreamInvokes OBJECT-TYPE
SYNTAX Counter64
UNITS "transactions"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Cumulative count of requests / invocations issued.
Discontinuities in this counter can be detected
by monitoring the corresponding instance of
applOpenChannelOpenTime."
::= { applTransactionStreamEntry 3 }
applTransactStreamInvokesLow OBJECT-TYPE
SYNTAX Counter32
UNITS "transactions"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This counter corresponds to the low thirty-two
bits of applTransactStreamInvokes.
Discontinuities in this counter can be detected
by monitoring the corresponding instance of
applOpenChannelOpenTime."
::= { applTransactionStreamEntry 4 }
applTransactStreamInvCumTimes OBJECT-TYPE
SYNTAX Counter32
UNITS "milliseconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The applTransactStreamInvCumTimes attribute reports the
cumulative sum of the lengths of the intervals measured
between the transmission of requests and the receipt of
(the first of) the corresponding response(s).
Discontinuities in this counter
网友评论
评论
发 布

更多软件教程
  • 软件教程推荐
更多+
Greenfoot设置中文的方法

Greenfoot设置中文的方法

Greenfoot是一款简单易用的Java开发环境,该软件界面清爽简约,既可以作为一个开发框使用,也能够作为集成开发环境使用,操作起来十分简单。这款软件支持多种语言,但是默认的语言是英文,因此将该软件下载到电脑上的时候,会发现软件的界面语言是英文版本的,这对于英语基础较差的朋友来说,使用这款软件就会...

07-05

Egret UI Editor修改快捷键的方法

Egret UI Editor修改快捷键的方法

Egret UI Editor是一款开源的2D游戏开发代码编辑软件,其主要功能是针对Egret项目中的Exml皮肤文件进行可视化编辑,功能十分强大。我们在使用这款软件的过程中,可以将一些常用操作设置快捷键,这样就可以简化编程,从而提高代码编辑的工作效率。但是这款软件在日常生活中使用得不多,并且专业性...

07-05

KittenCode新建项目的方法

KittenCode新建项目的方法

KittenCode是一款十分专业的编程软件,该软件给用户提供了可视化的操作界面,支持Python语言的编程开发以及第三方库管理,并且提供了很多实用的工具,功能十分强大。我们在使用这款软件进行编程开发的过程中,最基本、最常做的操作就是新建项目,因此我们很有必要掌握新建项目的方法。但是这款软件的专业性...

07-05

Thonny设置中文的方法

Thonny设置中文的方法

Thonny是一款十分专业的Python编辑软件,该软件界面清爽简单,给用户提供了丰富的编程工具,具备代码补全、语法错误显示等功能,非常的适合新手使用。该软件还支持多种语言,所以在下载这款软件的时候,有时候下载到电脑中的软件是英文版本的,这对于英语基础较差的小伙伴来说,使用这款软件就会变得十分困难,...

07-05

最新软件下载