米葫芦网

RFC3057 - ISDN Q.921-User Adaptation Layer

热度:9℃ 发布时间:2025-03-18 17:15:25

Network Working Group K. Morneault
Request for Comments: 3057 Cisco Systems
Category: Standards Track S. Rengasami
M. Kalla
Telcordia Technologies
G. Sidebottom
Nortel Networks
February 2001
ISDN Q.921-User Adaptation Layer
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2001). All Rights Reserved.
Abstract
This document defines a protocol for backhauling of ISDN Q.921 User
messages over IP using the Stream Control Transmission Protocol
(SCTP). This protocol would be used between a Signaling Gateway (SG)
and Media Gateway Controller (MGC). It is assumed that the SG
receives ISDN signaling over a standard ISDN interface.
Table of Contents
1. IntrodUCtion................................................. 2
1.1 Scope..................................................... 2
1.2 Terminology............................................... 3
1.3 IUA Overview.............................................. 4
1.4 Services Provided by the IUA Layer........................ 9
1.5 Functions Implemented by the IUA Layer.................... 12
1.6 Definition of IUA Boundaries.............................. 14
2. Conventions.................................................. 16
3. Protocol Elements............................................ 17
3.1 Common Message Header..................................... 17
3.2 IUA Message Header........................................ 20
3.3 Description of Messages................................... 22
4. Procedures................................................... 45
4.1 Procedures to Support Service in Section 1.4.1............ 45
4.2 Procedures to Support Service in Section 1.4.2............ 46
4.3 Procedures to Support Service in Section 1.4.3............ 47
5. Examples...................................................... 56
5.1 Establishment of associations between SG and MGC examples.. 56
5.2 ASP Traffic Fail-over Examples............................. 58
5.3 Q.921/Q.931 primitives backhaul Examples................... 59
5.4 Layer Management Communication Examples.................... 61
6. Security..................................................... 61
6.1 Threats.................................................... 61
6.2 Protecting Confidentiality ................................ 62
7. IANA Considerations.......................................... 62
7.1 SCTP Payload Protocol Identifier........................... 62
7.2 IUA Protocol Extensions.................................... 62
8. Acknowledgements............................................. 64
9. References................................................... 64
10. Authors" Addresses........................................... 65
11. Full Copyright Statement..................................... 66
1. Introduction
In this document, the term Q.921-User refers to an upper layer which
uses the services of Q.921, not the user side of ISDN interface [1].
Examples of the upper layer would be Q.931 and QSIG.
This section describes the need for ISDN Q.921-User Adaptation (IUA)
layer protocol as well as how this protocol shall be implemented.
1.1 Scope
There is a need for Switched Circuit Network (SCN) signaling protocol
delivery from an ISDN Signaling Gateway (SG) to a Media Gateway
Controller (MGC) as described in the Framework Architecture for
Signaling Transport [4]. The delivery mechanism SHOULD meet the
following criteria:
* Support for transport of the Q.921 / Q.931 boundary primitives
* Support for communication between Layer Management modules on SG
and MGC
* Support for management of active associations between SG and MGC
This document supports both ISDN Primary Rate Access (PRA) as well as
Basic Rate Access (BRA) including the support for both point-to-point
and point-to-multipoint modes of communication. This support
includes Facility Associated Signaling (FAS), Non-Facility Associated
Signaling (NFAS) and NFAS with backup D channel. QSIG adaptation
layer requirements do not differ from Q.931 adaptation layer, hence;
the procedures described in this document are also applicable for a
QSIG adaptation layer. For simplicity, only Q.931 will be mentioned
in the rest of this document.
1.2 Terminology
Interface - For the purposes of this document an interface supports
the relevant ISDN signaling channel. This signaling channel MAY be a
16 kbps D channel for an ISDN BRA as well as 64 kbps primary or
backup D channel for an ISDN PRA. For QSIG, the signaling channel is
a Qc channel.
Q.921-User - Any protocol normally using the services of the ISDN
Q.921 (e.g., Q.931, QSIG, etc.).
Backhaul - A SG terminates the lower layers of an SCN protocol and
backhauls the upper layer(s) to MGC for call processing. For the
purposes of this document the SG terminates Q.921 and backhauls Q.931
to MGC.
Association - An association refers to a SCTP association. The
association will provide the transport for the delivery of Q.921-User
protocol data units and IUA adaptation layer peer messages.
Stream - A stream refers to an SCTP stream; a uni-directional logical
channel established from one SCTP endpoint to another associated SCTP
endpoint, within which all user messages are delivered in-sequence
except for those submitted to the un-ordered delivery service.
Interface Identifier - The Interface Identifier identifies the
physical interface at the SG for which the signaling messages are
sent/received. The format of the Interface Identifier parameter can
be text or integer, the values of which are assigned according to
network operator policy. The values used are of local significance
only, coordinated between the SG and ASP. Significance is not
implied across SGs served by an AS.
Application Server (AS) - A logical entity serving a specific
application instance. An example of an Application Server is a MGC
handling the Q.931 and call processing for D channels terminated by
the Signaling Gateways. Practically speaking, an AS is modeled at
the SG as an ordered list of one or more related Application Server
Processes (e.g., primary, secondary, tertiary).
Application Server Process (ASP) - A process instance of an
Application Server. Examples of Application Server Processes are
primary or backup MGC instances.
Fail-over - The capability to re-route signaling traffic as required
between related ASPs in the event of failure or unavailability of the
currently used ASP (e.g., from primary MGC to back-up MGC). Fail-
over also applies upon the return to service of a previously
unavailable process.
Layer Management - Layer Management is a nodal function that handles
the inputs and outputs between the IUA layer and a local management
entity.
Network Byte Order - Most significant byte first, a.k.a Big Endian.
Host - The computing platform that the ASP process is running on.
1.3 IUA Overview
The architecture that has been defined [4] for SCN signaling
transport over IP uses multiple components, including an IP transport
protocol, a signaling common transport protocol and an adaptation
module to support the services eXPected by a particular SCN signaling
protocol from its underlying protocol layer.
This document defines an adaptation module that is suitable for the
transport of ISDN Q.921-User (e.g., Q.931) messages.
1.3.1 Example - SG to MGC
In a Signaling Gateway, it is expected that the ISDN signaling is
received over a standard ISDN network termination. The SG then
provides interworking of transport functions with IP Signaling
Transport, in order to transport the Q.931 signaling messages to the
MGC where the peer Q.931 protocol layer exists, as shown below:
****** ISDN ****** IP *******
* EP *---------------* SG *--------------* MGC *
****** ****** *******
+-----+ +-----+
Q.931 (NIF) Q.931
+-----+ +----------+ +-----+
IUA IUA
+----+ +-----+
Q.921 Q.921SCTP SCTP
+----+ +-----+
IP IP
+-----+ +-----+----+ +-----+
NIF - Nodal Interworking Function
EP - ISDN End Point
SCTP - Stream Control Transmission Protocol (Refer to [3])
IUA - ISDN User Adaptation Layer Protocol
It is recommended that the IUA use the services of the Stream Control
Transmission Protocol (SCTP) as the underlying reliable common
signaling transport protocol. The use of SCTP provides the following
features:
- explicit packet-oriented delivery (not stream-oriented)
- sequenced delivery of user messages within multiple streams,
with an option for order-of-arrival delivery of individual user
messages,
- optional multiplexing of user messages into SCTP datagrams,
- network-level fault tolerance through support of multi-homing
at either or both ends of an association,
- resistance to flooding and masquerade attacks, and
- data segmentation to conform to discovered path MTU size
There are scenarios without redundancy requirements and scenarios in
which redundancy is supported below the transport layer. In these
cases, the SCTP functions above MAY NOT be a requirement and TCP can
be used as the underlying common transport protocol.
1.3.2 Support for the management of SCTP associations between the SG
and ASPs
The IUA layer at the SG maintains the availability state of all
dynamically registered remote ASPs, in order to manage the SCTP
Associations and the traffic between the SG and ASPs. As well, the
active/inactive state of remote ASP(s) are also maintained. Active
ASPs are those currently receiving traffic from the SG.
The IUA layer MAY be instructed by local management to establish an
SCTP association to a peer IUA node. This can be achieved using the
M-SCTP ESTABLISH primitive to request, indicate and confirm the
establishment of an SCTP association with a peer IUA node.
The IUA layer MAY also need to inform local management of the status
of the underlying SCTP associations using the M-SCTP STATUS request
and indication primitive. For example, the IUA MAY inform local
management of the reason for the release of an SCTP association,
determined either locally within the IUA layer or by a primitive from
the SCTP.
1.3.3 Signaling Network Architecture
A Signaling Gateway is used to support the transport of Q.921-User
signaling traffic to one or more distributed ASPs (e.g., MGCs).
Clearly, the IUA protocol is not designed to meet the performance and
reliability requirements for such transport by itself. However, the
conjunction of distributed architecture and redundant networks does
allow for a sufficiently reliable transport of signaling traffic over
IP. The IUA protocol is flexible enough to allow its operation and
management in a variety of physical configurations, enabling Network
Operators to meet their performance and reliability requirements.
To meet the ISDN signaling reliability and performance requirements
for carrier grade networks, Network Operators SHOULD ensure that
there is no single point of failure provisioned in the end-to-end
network architecture between an ISDN node and an IP ASP.
Depending of course on the reliability of the SG and ASP functional
elements, this can typically be met by the provision of redundant
QOS-bounded IP network paths for SCTP Associations between SCTP End
Points, and redundant Hosts, and redundant SGs. The distribution of
ASPs within the available Hosts is also important. For a particular
Application Server, the related ASPs SHOULD be distributed over at
least two Hosts.
An example logical network architecture relevant to carrier-grade
operation in the IP network domain is shown in Figure 1 below:
Host1
******** **************
* *_________________________________________* ******** *
* * _________* * ASP1 * *
* SG1 * SCTP Associations * ******** *
* *_______________________ * *
******** **************

********
* *_______________________________
* *
* SG2 * SCTP Associations
* *____________
* * Host2
******** **************
_________________* ******** *
____________________________* * ASP1 * *
* ******** *
* *
**************
.
.
.
Figure 2 - Logical Model Example
For carrier grade networks, the failure or isolation of a particular
ASP SHOULD NOT cause stable calls to be dropped. This implies that
ASPs need, in some cases, to share the call state or be able to pass
the call state between each other. However, this sharing or
communication of call state information is outside the scope of this
document.
1.3.4 ASP Fail-over Model and Terminology
The IUA layer supports ASP fail-over functions in order to support a
high availability of call processing capability. All Q.921-User
messages incoming to an SG are assigned to a unique Application
Server, based on the Interface Identifier of the message.
The Application Server is, in practical terms, a list of all ASPs
configured to process Q.921-User messages from certain Interface
Identifiers. One or more ASPs in the list are normally active (i.e.,
handling traffic) while any others MAY be unavailable or inactive, to
be possibly used in the event of failure or unavailability of the
active ASP(s).
The fail-over model supports an n+k redundancy model, where n ASP(s)
are the minimum number of redundant ASPs required to handle traffic
and k ASPs are available to take over for a failed or unavailable
ASP. Note that 1+1 active/standby redundancy is a subset of this
model. A simplex 1+0 model is also supported as a subset, with no
ASP redundancy.
To avoid a single point of failure, it is recommended that a minimum
of two ASPs be in the list, resident in separate hosts and therefore
available over different SCTP Associations. For example, in the
network shown in Figure 2, all messages from a particular D Channel
(Interface Identifier) could be sent to ASP1 in Host1 or ASP1 in
Host2. The AS list at SG1 might look like the following:
Interface Identifier(s) - Application Server #1
ASP1/Host1 - State=Up, Active
ASP1/Host2 - State=Up, Inactive
In this 1+1 redundancy case, ASP1 in Host1 would be sent any incoming
message for the Interface Identifiers registered. ASP1 in Host2
would normally be brought to the active state upon failure of, or
loss of connectivity to, ASP1/Host1. In this example, both ASPs are
Up, meaning that the related SCTP association and far-end IUA peer is
ready.
The AS List at SG1 might also be set up in load-share mode as shown
below:
Interface Identifier(s) - Application Server #1
ASP1/Host1 - State=Up, Active
ASP1/Host2 - State=Up, Active
In this case, both the ASPs would be sent a portion of the traffic.
In the process of fail-over, it is recommended that in the case of
ASPs supporting call processing, stable calls do not get released.
It is possible that calls in transition MAY fail, although measures
of communication between the ASPs involved can be used to mitigate
this problem. For example, the two ASPs MAY share call state via
shared memory, or MAY use an ASP to ASP protocol to pass call state
information. The ASP to ASP protocol is outside the scope of this
document.
1.3.5 Client/Server Model
It is recommended that the SG and ASP be able to support both client
and server operation. The peer endpoints using IUA SHOULD be
configured so that one always takes on the role of client and the
other the role of server for initiating SCTP associations. The
default orientation would be for the SG to take on the role of server
while the ASP is the client. In this case, ASPs SHOULD initiate the
SCTP association to the SG.
The SCTP (and UDP/TCP) Registered User Port Number Assignment for IUA
is 9900.
1.4 Services Provided by the IUA Layer
1.4.1 Support for transport of Q.921/Q.931 boundary primitives
In the backhaul scenario, the Q.921/Q.931 boundary primitives are
exposed. IUA layer needs to support all of the primitives of this
boundary to successfully backhaul Q.931.
This includes the following primitives [1]:
DL-ESTABLISH
The DL-ESTABLISH primitives are used to request, indicate and confirm
the outcome of the procedures for establishing multiple frame
operation.
DL-RELEASE
DL-RELEASE primitives are used to request, indicate, and confirm the
outcome of the procedures for terminating a previously established
multiple frame operation, or for reporting an unsuccessful
establishment attempt.
DL-DATA
The DL-DATA primitives are used to request and indicate layer 3
(Q.931) messages which are to be transmitted, or have been received,
by the Q.921 layer using the acknowledged information transfer
service.
DL-UNIT DATA
The DL-UNIT DATA primitives are used to request and indicate layer 3
(Q.931) messages which are to be transmitted, by the Q.921 layer
using the unacknowledged information transfer service.
1.4.2 Support for communication between Layer Management modules on SG
and MGC
It is envisioned that the IUA layer needs to provide some services
that will facilitate communication between Layer Management modules
on the SG and MGC. These primitives are pointed out in [2], which
are shown below:
M-TEI STATUS
The M-TEI STATUS primitives are used to request, confirm and indicate
the status (assigned/unassigned) of a TEI.
M-ERROR
The M-ERROR primitive is used to indicate an error with a received
IUA message (e.g., interface identifier value is not known to the
SG).
1.4.3 Support for management of active associations between SG and MGC
A set of primitives between the IUA layer and the Layer Management
are defined below to help the Layer Management manage the SCTP
association(s) between the SG and MGC. The IUA layer can be
instructed by the Layer Management to establish an SCTP association
to a peer IUA node. This procedure can be achieved using the M-SCTP
ESTABLISH primitive.
M-SCTP ESTABLISH
The M-SCTP ESTABLISH primitives are used to request, indicate, and
confirm the establishment of an SCTP association to a peer IUA node.
M-SCTP RELEASE
The M-SCTP RELEASE primitives are used to request, indicate, and
confirm the release of an SCTP association to a peer IUA node.
The IUA layer MAY also need to inform the status of the SCTP
associations to the Layer Management. This can be achieved using the
M-SCTP STATUS primitive.
M-SCTP STATUS
The M-SCTP STATUS primitives are used to request and indicate the
status of the underlying SCTP association(s).
The Layer Management MAY need to inform the IUA layer of an AS/ASP
status (i.e., failure, active, etc.), so that messages can be
exchanged between IUA layer peers to stop traffic to the local IUA
user. This can be achieved using the M-ASP STATUS primitive.
M-ASP STATUS
The ASP status is stored inside IUA layer on both the SG and MGC
sides. The M-ASP STATUS primitive can be used by Layer Management to
request the status of the Application Server Process from the IUA
layer. This primitive can also be used to indicate the status of the
Application Server Process.
M-ASP-UP
The M-ASP-UP primitive can be used by Layer Management to send a ASP
Up message for the Application Server Process. It can also be used
to generate an ASP Up Acknowledgement.
M-ASP-DOWN
The M-ASP-DOWN primitive can be used by Layer Management to send a
ASP Down message for the Application Server Process. It can also be
used to generate an ASP Down Acknowledgement.
M-ASP-ACTIVE
The M-ASP-UP primitive can be used by Layer Management to send a ASP
Active message for the Application Server Process. It can also be
used to generate an ASP Active Acknowledgement.
M-ASP-INACTIVE
The M-ASP-UP primitive can be used by Layer Management to send a ASP
Inactive message for the Application Server Process. It can also be
used to generate an ASP Inactive Acknowledgement.
M-AS STATUS
The M-AS STATUS primitive can be used by Layer Management to request
the status of the Application Server. This primitive can also be
used to indicate the status of the Application Server.
1.5 Functions Implemented by the IUA Layer
1.5.1 Mapping
The IUA layer MUST maintain a map of the Interface Identifier to a
physical interface on the Signaling Gateway. A physical interface
would be a T1 line, E1 line, etc., and could include the TDM
timeslot. In addition, for a given interface the SG MUST be able to
identify the associated signaling channel. IUA layers on both SG and
MGC MAY maintain the status of TEIs and SAPIs.
The SG maps an Interface Identifier to an SCTP association/stream
only when an ASP sends an ASP Active message for a particular
Interface Identifier. It MUST be noted, however, that this mapping
is dynamic and could change at any time due to a change of ASP state.
This mapping could even temporarily be invalid, for example during
failover of one ASP to another. Therefore, the SG MUST maintain the
states of AS/ASP and reference them during the routing of an messages
to an AS/ASP.
One example of the logical view of relationship between D channel,
Interface Identifier, AS and ASP in the SG is shown below:
/---------------------------------------------------+
/ /--------------------------------------------------+
/ / v
/ / +----+ act+-----+ +-------+ -+--+-+--+-
D chan1-------->IID -+ +--> ASP ---> Assoc v
/ +----+ +----+ +-----+ +-------+ -+--+--+--+-
/ +-> AS --+ Streams
/ +----+ +----+ stb+-----+
D chan2-------->IID -+ ASP
+----+ +-----+
where IID = Interface Identifier
Note that an ASP can be in more than one AS.
1.5.2 Status of ASPs
The IUA layer on the SG MUST maintain the state of the ASPs it is
supporting. The state of an ASP changes because of reception of
peer-to-peer messages (ASPM messages as described in Section 3.3.2)
or reception of indications from the local SCTP association. ASP
state transition procedures are described in Section 4.3.1.
At a SG, an Application Server list MAY contain active and inactive
ASPs to support ASP load-sharing and fail-over procedures. When, for
example, both a primary and a back-up ASP are available, IUA peer
protocol is required to control which ASP is currently active. The
ordered list of ASPs within a logical Application Server is kept
updated in the SG to reflect the active Application Server
Process(es).
Also the IUA layer MAY need to inform the local management of the
change in status of an ASP or AS. This can be achieved using the M-
ASP STATUS or M-AS STATUS primitives.
1.5.3 SCTP Stream Management
SCTP allows a user specified number of streams to be opened during
the initialization. It is the responsibility of the IUA layer to
ensure proper management of these streams. Because of the
unidirectional nature of streams, an IUA layer is not aware of the
stream number to Interface Identifier mapping of its peer IUA layer.
Instead, the Interface Identifier is in the IUA message header.
The use of SCTP streams within IUA is recommended in order to
minimize transmission and buffering delay, therefore improving the
overall performance and reliability of the signaling elements. It is
recommended that a separate SCTP stream is used for each D channel.
1.5.4 Seamless Network Management Interworking
The IUA layer on the SG SHOULD pass an indication of unavailability
of the IUA-User (Q.931) to the local Layer Management, if the
currently active ASP moves from the ACTIVE state. The Layer
Management could instruct Q.921 to take some action, if it deems
appropriate.
Likewise, if an SCTP association fails, the IUA layer on both the SG
and ASP sides MAY generate Release primitives to take the data links
out-of-service.
1.5.5 Congestion Management
If the IUA layer becomes congested (implementation dependent), it MAY
stop reading from the SCTP association to flow control from the peer
IUA.
1.6 Definition of IUA Boundaries
1.6.1 Definition of IUA/Q.921 boundary
DL-ESTABLISH
DL-RELEASE
DL-DATA
DL-UNIT DATA
1.6.2 Definition of IUA/Q.931 boundary
DL-ESTABLISH
DL-RELEASE
DL-DATA
DL-UNIT DATA
1.6.3 Definition of SCTP/IUA Boundary
An example of the upper layer primitives provided by SCTP are
available in Reference [3] section 10.
1.6.4 Definition of IUA/Layer-Management Boundary
M-SCTP ESTABLISH request
Direction: LM -> IUA
Purpose: LM requests ASP to establish an SCTP association with an SG.
M-STCP ESTABLISH confirm
Direction: IUA -> LM
Purpose: ASP confirms to LM that it has established an SCTP
association with an SG.
M-SCTP ESTABLISH indication
Direction: IUA -> LM
Purpose: SG informs LM that an ASP has established an SCTP
association.
M-SCTP RELEASE request
Direction: LM -> IUA
Purpose: LM requests ASP to release an SCTP association with SG.
M-SCTP RELEASE confirm
Direction: IUA -> LM
Purpose: ASP confirms to LM that it has released SCTP association
with SG.
M-SCTP RELEASE indication
Direction: IUA -> LM
Purpose: SG informs LM that ASP has released an SCTP association.
M-SCTP STATUS request
Direction: LM -> IUA
Purpose: LM requests IUA to report status of SCTP association.
M-SCTP STATUS indication
Direction: IUA -> LM
Purpose: IUA reports status of SCTP association.
M-ASP STATUS request
Direction: LM -> IUA
Purpose: LM requests SG to report status of remote ASP.
M-ASP STATUS indication
Direction: IUA -> LM
Purpose: SG reports status of remote ASP.
M-AS-STATUS request
Direction: LM -> IUA
Purpose: LM requests SG to report status of AS.
M-AS-STATUS indication
Direction: IUA -> LM
Purpose: SG reports status of AS.
M-NOTIFY indication
Direction: IUA -> LM
Purpose: ASP reports that it has received a NOTIFY message
from its peer.
M-ERROR indication
Direction: IUA -> LM
Purpose: ASP or SG reports that it has received an ERROR
message from its peer.
M-ASP-UP request
Direction: LM -> IUA
Purpose: LM requests ASP to start its operation and send an ASP UP
message to the SG.
M-ASP-UP confirm
Direction: IUA -> LM
Purpose: ASP reports that is has received an ASP UP Acknowledgement
message from the SG.
M-ASP-DOWN request
Direction: LM -> IUA
Purpose: LM requests ASP to stop its operation and send an ASP DOWN
message to the SG.
M-ASP-DOWN confirm
Direction: IUA -> LM
Purpose: ASP reports that is has received an ASP DOWN
Acknowledgement message from the SG.
M-ASP-ACTIVE request
Direction: LM -> IUA
Purpose: LM requests ASP to send an ASP ACTIVE message to the SG.
M-ASP-ACTIVE confirm
Direction: IUA -> LM
Purpose: ASP reports that is has received an ASP ACTIVE
Acknowledgement message from the SG.
M-ASP-INACTIVE request
Direction: LM -> IUA
Purpose: LM requests ASP to send an ASP INACTIVE message to the SG.
M-ASP-INACTIVE confirm
Direction: IUA -> LM
Purpose: ASP reports that is has received an ASP INACTIVE
Acknowledgement message from the SG.
M-TEI STATUS request
Direction: LM -> IUA
Purpose: LM requests ASP to send a TEI status request to the SG.
M-TEI STATUS indication
Direction: IUA -> LM
Purpose: ASP reports that is has received a TEI status indication
from the SG.
M-TEI STATUS confirm
Direction: IUA -> LM
Purpose: ASP reports that is has received a TEI status confirm from the
SG.
2.0 Conventions
The keyWords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
they appear in this document, are to be interpreted as described in
[RFC2119].
3.0 Protocol Elements
This section describes the format of various messages used in this
protocol.
3.1 Common Message Header
The protocol messages for Q.921-User Adaptation require a message
header which contains the adaptation layer version, the message type,
and message length.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Version Reserved Message Class Message Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Message Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3 Common Header Format
All fields in an IUA message MUST be transmitted in the network byte
order, unless otherwise stated.
3.1.1 Version
The version field contains the version of the IUA adaptation layer.
The supported versions are the following:
Value Version
----- -------
1 Release 1.0
3.1.2 Message Classes and Types
The following List contains the valid Message Classes:
Message Class: 8 bits (unsigned integer)
0 Management (MGMT) Message [IUA/M2UA/M3UA/SUA]
1 Transfer Messages [M3UA]
2 SS7 Signalling Network Management (SSNM) Messages [M3UA/SUA]
3 ASP State Maintenance (ASPSM) Messages [IUA/M2UA/M3UA/SUA]
4 ASP Traffic Maintenance (ASPTM) Messages [IUA/M2UA/M3UA/SUA]
5 Q.921/Q.931 Boundary Primitives Transport (QPTM)
Messages [IUA]
6 MTP2 User Adaptation (MAUP) Messages [M2UA]
7 Connectionless Messages [SUA]
8 Connection-Oriented Messages [SUA]
9 to 127 Reserved by the IETF
128 to 255 Reserved for IETF-Defined Message Class extensions
The following list contains the message names for the defined
messages.
Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages
0 Reserved
1 Data Request Message
2 Data Indication Message
3 Unit Data Request Message
4 Unit Data Indication Message
5 Establish Request
6 Establish Confirm
7 Establish Indication
8 Release Request
9 Release Confirm
10 Release Indication
11 to 127 Reserved by the IETF
128 to 255 Reserved for IETF-Defined QPTM extensions
Application Server Process State Maintenance (ASPSM) messages
0 Reserved
1 ASP Up (UP)
2 ASP Down (DOWN)
3 Heartbeat (BEAT)
4 ASP Up Ack (UP ACK)
5 ASP Down Ack (DOWN ACK)
6 Heatbeat Ack (BEAT ACK)
7 to 127 Reserved by the IETF
128 to 255 Reserved for IETF-Defined ASPSM extensions
Application Server Process Traffic Maintenance (ASPTM) messages
0 Reserved
1 ASP Active (ACTIVE)
2 ASP Inactive (INACTIVE)
3 ASP Active Ack (ACTIVE ACK)
4 ASP Inactive Ack (INACTIVE ACK)
5 to 127 Reserved by the IETF
128 to 255 Reserved for IETF-Defined ASPTM extensions
Management (MGMT) Messages
0 Error (ERR)
1 Notify (NTFY)
2 TEI Status Request
3 TEI Status Confirm
4 TEI Status Indication
5 to 127 Reserved by the IETF
128 to 255 Reserved for IETF-Defined MGMT extensions
3.1.3 Reserved
The Reserved field is 8-bits. It SHOULD be set to all "0"s and
ignored by the receiver.
3.1.4 Message Length
The Message length defines the length of the message in octets,
including the Common header.
3.1.5 Variable-Length Parameter Format
IUA messages consist of a Common Header followed by zero or more
variable-length parameters, as defined by the message type. The
variable-length parameters contained in a message are defined in a
Tag-Length-Value format as shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Parameter Tag Parameter Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ Parameter Value /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Mandatory parameters MUST be placed before optional parameters in a
message.
Parameter Tag: 16 bits (unsigned integer)
The Tag field is a 16 bit identifier of the type of parameter. It
takes a value of 0 to 65534.
The value of 65535 is reserved for IETF-defined extensions. Values
other than those defined in specific parameter description are
reserved for use by the IETF.
Parameter Length: 16 bits (unsigned integer)
The Parameter Length field contains the size of the parameter in
bytes, including the Parameter Tag, Parameter Length, and Parameter
Value fields. The Parameter Length does not include any padding
bytes.
Parameter Value: variable-length
The Parameter Value field contains the actual information to be
transferred in the parameter.
The total length of a parameter (including Tag, Parameter Length and
Value fields) MUST be a multiple of 4 bytes. If the length of the
parameter is not a multiple of 4 bytes, the sender pads the Parameter
at the end (i.e., after the Parameter Value field) with all zero
bytes. The length of the padding is NOT included in the parameter
length field. A sender SHOULD NEVER pad with more than 3 bytes. The
receiver MUST ignore the padding bytes.
3.2 IUA Message Header
In addition to the common message header, there will be a specific
message header for QPTM and the TEI Status MGMT messages. The IUA
message header will immediately follow the Common header in these
messages.
This message header will contain the Interface Identifier and Data
Link Connection Identifier (DLCI). The Interface Identifier
identifies the physical interface terminating the signaling channel
at the SG for which the signaling messages are sent/received. The
format of the Interface Identifier parameter can be text or integer.
The Interface Identifiers are assigned according to network operator
policy. The integer values used are of local significance only,
coordinated between the SG and ASP.
The integer formatted Interface Identifier MUST be supported. The
text formatted Interface Identifier MAY optionally be supported.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x1) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier (integer)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x5) Length=8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
DLCI Spare
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4 IUA Message Header (Integer-based Interface Identifier)
The Tag value for the Integer-based Interface Identifier is 0x1. The
length is always set to a value of 8.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x3) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier (text)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x5) Length=8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
DLCI Spare
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5 IUA Message Header (Text-based Interface Identifier)
The Tag value for the Text-based Interface Identifier is 0x3. The
length is variable.
The DLCI format is shown below in Figure 6.
0 1 2 3 4 5 6 7
+-----+-----+-----+-----+-----+-----+-----+-----+
0 SPR SAPI
+-----------------------------------------------+
1 TEI
+-----------------------------------------------+
Figure 6 DLCI Format
SPR: Spare 2nd bit in octet 1, (1 bit)
SAPI: Service Access Point Identifier, 3rd through 8th bits in octet
1 (6 bits)
TEI: Terminal Endpoint Identifier, 2nd through 8th bits in octet 2
(7 bits)
The DLCI field (including the SAPI and TEI) is coded in accordance
with Q.921.
3.3 IUA Messages
The following section defines the messages and parameter contents.
The IUA messages will use the common message header (Figure 3) and
the IUA message header (Figure 4 and Figure 5).
3.3.1 Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages
3.3.1.1 Establish Messages (Request, Confirm, Indication)
The Establish Messages are used to establish a data link on the
signaling channel or to confirm that a data link on the signaling
channel has been established. The MGC controls the state of the D
channel. When the MGC desires the D channel to be in-service, it
will send the Establish Request message.
When the MGC sends an IUA Establish Request message, the MGC MAY
start a timer. This timer would be stopped upon receipt of an IUA
Establish Confirm or Establish Indication. If the timer expires, the
MGC would re-send the IUA Establish Request message and restart the
timer. In other words, the MGC MAY continue to request the
establishment of the data link on periodic basis until the desired
state is achieved or take some other action (notify the Management
Layer).
When the SG receives an IUA Establish Request from the MGC, the SG
shall send the Q.921 Establish Request primitive to the its Q.921
entity. In addition, the SG shall map any response received from the
Q.921 entity to the appropriate message to the MGC. For example, if
the Q.921 entity responds with a Q.921 Establish Confirm primitive,
the IUA layer shall map this to an IUA Establish Confirm message. As
another example, if the IUA Layer receives a Q.921 Release Confirm or
Release Indication as an apparent response to the Q.921 Establish
Request primitive, the IUA Layer shall map these to the corresponding
IUA Release Confirm or Release Indication messages.
The Establish messages contain the common message header followed by
IUA message header. It does not contain any additional parameters.
3.3.1.2 Release Messages (Request, Indication, Confirmation)
The Release Request message is used to release the data link on the
signaling channel. The Release Confirm and Indication messages are
used to indicate that the data link on the signaling channel has been
released.
If a response to the Release Request message is not received, the MGC
MAY resend the Release Request message. If no response is received,
the MGC can consider the data link as being released. In this case,
signaling traffic on that D channel is not expected from the SG and
signaling traffic will not be sent to the SG for that D channel.
The Release messages contain the common message header followed by
IUA message header. The Release confirm message is in response to a
Release Request message and it does not contain any additional
parameters. The Release Request and Indication messages contain the
following parameter:
REASON
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xf) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reason
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The valid values for Reason are shown in the following table.
Define Value Description
RELEASE_MGMT 0x0 Management layer generated release.
RELEASE_PHYS 0x1 Physical layer alarm generated release.
RELEASE_DM 0x2 Specific to a request. Indicates Layer 2
SHOULD release and deny all requests from
far end to establish a data link on the
signaling channel (i.e., if SABME is
received send a DM)
RELEASE_OTHER 0x3 Other reasons
Note: Only RELEASE_MGMT, RELEASE_DM and RELEASE_OTHER are valid
reason codes for a Release Request message.
3.3.1.3 Data Messages (Request, Indication)
The Data message contains an ISDN Q.921-User Protocol Data Unit (PDU)
corresponding to acknowledged information transfer service.
The Data messages contain the common message header followed by IUA
message header. The Data message contains the following parameters:
PROTOCOL DATA
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xe) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Protocol Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The protocol data contains upper layer signaling message e.g. Q.931,
QSIG.
3.3.1.4 Unit Data Messages (Request, Indication)
The Unit Data message contains an ISDN Q.921-User Protocol Data Unit
(PDU) corresponding to unacknowledged information transfer service.
The Unit Data messages contain the common message header followed by
IUA message header. The Unit Data message contains the following
parameters
PROTOCOL DATA
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xe) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Protocol Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.3.2 Application Server Process Maintenance (ASPM) Messages
The ASPM messages will only use the common message header.
3.3.2.1 ASP Up (ASPUP)
The ASP Up (ASPUP) message is sent by an ASP to indicate to an SG
that it is ready to receive traffic or maintenance messages.
The ASPUP message contains the following parameters:
Info String (optional)
The format for ASPUP Message parameters is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The optional INFO String parameter can carry any meaningful 8-bit
ASCII character string along with the message. Length of the INFO
String parameter is from 0 to 255 characters. No procedures are
presently identified for its use but the INFO String MAY be used for
debugging purposes.
3.3.2.2 ASP Up Ack
The ASP Up Ack message is used to acknowledge an ASP Up message
received from a remote IUA peer.
The ASPUP Ack message contains the following parameters:
INFO String (optional)
The format for ASPUP Ack Message parameters is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format and description of the optional Info String parameter is
the same as for the ASP Up message (See Section 3.3.3.1).
3.3.2.3 ASP Down (ASPDN)
The ASP Down (ASPDN) message is sent by an ASP to indicate to an SG
that it is NOT ready to receive traffic or maintenance messages.
The ASPDN message contains the following parameters:
Reason
INFO String (Optional)
The format for the ASPDN message parameters is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xa) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reason
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format and description of the optional Info String parameter is
the same as for the ASP Up message (See Section 3.3.3.1.).
The Reason parameter indicates the reason that the remote IUA
adaptation layer is unavailable. The valid values for Reason are
shown in the following table.
Value Description
0x1 Management Inhibit
If a ASP is removed from Management Inhibit, the ASP will send an ASP
Up message.
3.3.2.4 ASP Down Ack
The ASP Down Ack message is used to acknowledge an ASP Down message
received from a remote IUA peer.
The ASP Down Ack message contains the following parameters:
Reason
INFO String (Optional)
The format for the ASP Down Ack message parameters is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xa) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reason
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format and description of the optional Info String parameter is
the same as for the ASP Up message (See Section 3.3.2.1.).
The format of the Reason parameter is the same as for the ASP Down
message (See Section 3.3.2.3).
3.3.2.5 ASP Active (ASPAC)
The ASPAC message is sent by an ASP to indicate to an SG that it is
Active and ready to be used.
The ASPAC message contains the following parameters
Traffic Mode Type (Mandatory)
Interface Identifier (Optional)
- Combination of integer and integer ranges, OR
- string (text formatted)
INFO String (Optional)
The format for the ASPAC message using integer formatted Interface
Identifiers is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x1=integer) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifiers*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x8=integer range) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StartN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StopN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x1 or 0x8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format for the ASPAC message using text formatted (string)
Interface Identifiers is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x3=string) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Traffic Mode Type parameter identifies the traffic mode of
operation of the ASP within an AS. The valid values for Type are
shown in the following table:
Value Description
0x1 Over-ride
0x2 Load-share
Within a particular Interface Identifier, only one Traffic Mode Type
can be used. The Over-ride value indicates that the ASP is operating
in Over-ride mode, where the ASP takes over all traffic in an
Application Server (i.e., primary/back-up operation), over-riding any
currently active ASPs in the AS. In Load-share mode, the ASP will
share in the traffic distribution with any other currently active
ASPs.
The optional Interface Identifiers parameter contains a list of
Interface Identifier integers (Type 0x1 or Type 0x8) or text strings
(Type 0x3) indexing the Application Server traffic that the sending
ASP is configured/registered to receive. If integer formatted
Interface Identifiers are being used, the ASP can also send ranges of
Interface Identifiers (Type 0x8). Interface Identifier types Integer
(0x1) and Integer Range (0x8) are allowed in the same message. Text
formatted Interface Identifiers (0x3) cannot be used with either
Integer (0x1) or Integer Range (0x8) types.
If no Interface Identifiers are included, the message is for all
provisioned Interface Identifiers within the AS(s) in which the ASP
is provisioned. If only a subset of Interface Identifiers are
included, the ASP is noted as Active for all the Interface
Identifiers provisioned for that AS.
Note: If the optional Interface Identifier parameter is present, the
integer formatted Interface Identifier MUST be supported, while the
text formatted Interface Identifier MAY be supported.
The format and description of the optional Info String parameter is
the same as for the ASP Up message (See Section 3.3.2.1.).
An SG that receives an ASPAC with an incorrect Traffic Mode Type for
a particular Interface Identifier will respond with an Error Message
(Cause: Unsupported Traffic Handling Mode).
3.3.2.6 ASP Active Ack
The ASPAC Ack message is used to acknowledge an ASP-Active message
received from a remote IUA peer.
The ASPAC Ack message contains the following parameters:
Traffic Mode Type (Mandatory)
Interface Identifier (Optional)
- Combination of integer and integer ranges, OR
- string (text formatted)
INFO String (Optional)
The format for the ASPAC Ack message with Integer-formatted Interface
Identifiers is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x1=integer) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifiers*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x8=integer range) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StartN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StopN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x1 or 0x8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format for the ASP Active Ack message using text formatted
(string) Interface Identifiers is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x3=string) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format of the Traffic Mode Type and Interface Identifier
parameters is the same as for the ASP Active message (See Section
3.3.2.5).
The format and description of the optional Info String parameter is
the same as for the ASP Up message (See Section 3.3.2.1.).
3.3.2.7 ASP Inactive (ASPIA)
The ASPIA message is sent by an ASP to indicate to an SG that it is
no longer an active ASP to be used from within a list of ASPs. The
SG will respond with an ASPIA Ack message and either discard incoming
messages or buffer for a timed period and then discard.
The ASPIA message contains the following parameters
Traffic Mode Type (Mandatory)
Interface Identifiers (Optional)
- Combination of integer and integer ranges, OR
- string (text formatted)
INFO String (Optional)
The format for the ASP Inactive message parameters using Integer
formatted Interface Identifiers is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x1=integer) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifiers*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x8=integer range) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StartN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StopN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x1 or 0x8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format for the ASP Inactive message using text formatted (string)
Interface Identifiers is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x3=string) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Traffic Mode Type parameter identifies the traffic mode of
operation of the ASP within an AS. The valid values for Traffic Mode
Type are shown in the following table:
Value Description
0x1 Over-ride
0x2 Load-share
The format and description of the optional Interface Identifiers and
Info String parameters is the same as for the ASP Active message (See
Section 3.3.2.3.).
The optional Interface Identifiers parameter contains a list of
Interface Identifier integers or text strings indexing the
Application Server traffic that the sending ASP is
configured/registered to receive, but does not want to receive at
this time.
3.3.2.8 ASP Inactive Ack
The ASP Inactive (ASPIA) Ack message is used to acknowledge an ASP
Inactive message received from a remote IUA peer.
The ASPIA Ack message contains the following parameters:
Traffic Mode Type (Mandatory)
Interface Identifiers (Optional)
- Combination of integer and integer ranges, OR
- string (text formatted)
INFO String (Optional)
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x1=integer) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifiers*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x8=integer range) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop1*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Start2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier Stop2*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StartN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier StopN*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x1 or 0x8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format for the ASP Inactive Ack message using text formatted
(string) Interface Identifiers is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0xb) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Traffic Mode Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x3=string) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface Identifier*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Additional Interface Identifiers
of Tag Type 0x3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag (0x4) Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
INFO String*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format of the Traffic Mode Type and Interface Identifier
parameters is the same as for the ASP Inactive message (See Section
3.3.2.7).
The format and description of the optional Info String parameter
网友评论
评论
发 布

更多软件教程
  • 软件教程推荐
更多+
Greenfoot设置中文的方法

Greenfoot设置中文的方法

Greenfoot是一款简单易用的Java开发环境,该软件界面清爽简约,既可以作为一个开发框使用,也能够作为集成开发环境使用,操作起来十分简单。这款软件支持多种语言,但是默认的语言是英文,因此将该软件下载到电脑上的时候,会发现软件的界面语言是英文版本的,这对于英语基础较差的朋友来说,使用这款软件就会...

07-05

Egret UI Editor修改快捷键的方法

Egret UI Editor修改快捷键的方法

Egret UI Editor是一款开源的2D游戏开发代码编辑软件,其主要功能是针对Egret项目中的Exml皮肤文件进行可视化编辑,功能十分强大。我们在使用这款软件的过程中,可以将一些常用操作设置快捷键,这样就可以简化编程,从而提高代码编辑的工作效率。但是这款软件在日常生活中使用得不多,并且专业性...

07-05

KittenCode新建项目的方法

KittenCode新建项目的方法

KittenCode是一款十分专业的编程软件,该软件给用户提供了可视化的操作界面,支持Python语言的编程开发以及第三方库管理,并且提供了很多实用的工具,功能十分强大。我们在使用这款软件进行编程开发的过程中,最基本、最常做的操作就是新建项目,因此我们很有必要掌握新建项目的方法。但是这款软件的专业性...

07-05

Thonny设置中文的方法

Thonny设置中文的方法

Thonny是一款十分专业的Python编辑软件,该软件界面清爽简单,给用户提供了丰富的编程工具,具备代码补全、语法错误显示等功能,非常的适合新手使用。该软件还支持多种语言,所以在下载这款软件的时候,有时候下载到电脑中的软件是英文版本的,这对于英语基础较差的小伙伴来说,使用这款软件就会变得十分困难,...

07-05

最新软件下载